

ACTFLEX 700 PU PRIMER FORSPEC PROTECTIVE COATINGS

Version No: 3.6

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Issue Date: **17/03/2025** Print Date: **17/03/2025** S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product	Identifier
---------	------------

Product name	ACTFLEX 700 PU PRIMER
Synonyms	Not Available
Proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains naphtha petroleum, light aromatic solvent)

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	A single pack, quick drying, moisture curing synthetic resin solvent primer
--------------------------	---

Details of the manufacturer or supplier of the safety data sheet

Registered company name	FORSPEC PROTECTIVE COATINGS
Address	22/872 Canterbury Rd. Roselands NSW 2196 Australia
Telephone	+61 2 8021 3517
Website	www.forspec.com.au
Email	info@forspec.com.au

Emergency telephone number

Association / Organisation	FORSPEC PROTECTIVE COATINGS	
Emergency telephone	+61 2 8021 3517 (Mon-Fri 7.30am to 5pm; Sat 8.30am to	
number(s)	12.30pm)	

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	S6
Classification [1]	Flammable Liquids Category 3, Aspiration Hazard Category 1, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Carcinogenicity Category 1B, Specific Target Organ Toxicity - Repeated Exposure Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H226	Flammable liquid and vapour.
H304	May be fatal if swallowed and enters airways.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H335	May cause respiratory irritation.
H350i	May cause cancer by inhalation.
H373	May cause damage to organs through prolonged or repeated exposure.

Issue Date: 17/03/2025 Version No: 3.6 Page 2 of 19

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

Precautionary statement(s) General

P101	If medical advice is needed, have product container or label at hand.
P102	Keep out of reach of children.
P103	Read carefully and follow all instructions.

Precautionary statement(s) Prevention

r recautionary statement(s) i re	svention -
P201	Obtain special instructions before use.
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P260	Do not breathe mist/vapours/spray.
P271	Use only a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P284	[In case of inadequate ventilation] wear respiratory protection.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.
P331	Do NOT induce vomiting.
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.
P308+P313	IF exposed or concerned: Get medical advice/ attention.
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.
P302+P352	IF ON SKIN: Wash with plenty of water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].

Precautionary statement(s) Storage

, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	
P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501	Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name			
64742-95-6	30-60	naphtha petroleum, light aromatic solvent			
101-68-8	10-30	4.4'-diphenylmethane diisocyanate (MDI)			
108-65-6	<10	propylene glycol monomethyl ether acetate, alpha-isomer			
98-82-8	<1	<u>cumene</u>			
Not Available	to 100	Polyurethane prepolymer			
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available					

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

• Immediately hold eyelids apart and flush the eye continuously with running water.

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
- ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
 Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Version No: 3.6 Page 3 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

If skin or hair contact occurs: Quickly but gently, wipe material off skin with a dry, clean cloth Skin Contact Immediately remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as Inhalation trained. Perform CPR if necessary. ▶ Transport to hospital, or doctor, without delay. Following uptake by inhalation, move person to an area free from risk of further exposure. Oxygen or artificial respiration should be administered as needed. Asthmatic-type symptoms may develop and may be immediate or delayed up to several hours. Treatment is essentially symptomatic. A physician should be consulted. IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless Ingestion instructed otherwise: ▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (headdown position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- · After the initial episode individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur.Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- ▶ Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For sub-chronic and chronic exposures to isocyanates:

- This material may be a potent pulmonary sensitiser which causes bronchospasm even in patients without prior airway hyperreactivity.
- Clinical symptoms of exposure involve mucosal irritation of respiratory and gastrointestinal tracts.
- · Conjunctival irritation, skin inflammation (erythema, pain vesiculation) and gastrointestinal disturbances occur soon after exposure.
- Pulmonary symptoms include cough, burning, substernal pain and dyspnoea.
- Some cross-sensitivity occurs between different isocyanates
- Noncardiogenic pulmonary oedema and bronchospasm are the most serious consequences of exposure. Markedly symptomatic patients should receive oxygen, ventilatory support and an intravenous line.
- Treatment for asthma includes inhaled sympathomimetics (epinephrine [adrenalin], terbutaline) and steroids.

Print Date: 17/03/2025

Version No: 3.6 Page 4 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

- Activated charcoal (1 g/kg) and a cathartic (sorbitol, magnesium citrate) may be useful for ingestion.
- Mydriatics, systemic analgesics and topical antibiotics (Sulamyd) may be used for corneal abrasions.
- There is no effective therapy for sensitised workers.

[Ellenhorn and Barceloux; Medical Toxicology]

NOTE: Isocyanates cause airway restriction in naive individuals with the degree of response dependant on the concentration and duration of exposure. They induce smooth muscle contraction which leads to bronchoconstrictive episodes. Acute changes in lung function, such as decreased FEV1, may not represent sensitivity. [Karol & Jin, Frontiers in Molecular Toxicology, pp 56-61, 1992]

Personnel who work with isocyanates, isocyanate prepolymers or polyisocyanates should have a pre-placement medical examination and periodic examinations thereafter, including a pulmonary function test. Anyone with a medical history of chronic respiratory disease, asthmatic or bronchial attacks, indications of allergic responses, recurrent eczema or sensitisation conditions of the skin should not handle or work with isocyanates. Anyone who develops chronic respiratory distress when working with isocyanates should be removed from exposure and examined by a physician. Further exposure must be avoided if a sensitivity to isocyanates or polyisocyanates has developed.

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

. . . .

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
dvice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 ▶ Liquid and vapour are highly flammable. ▶ Severe fire hazard when exposed to heat, flame and/or oxidisers. ▶ Vapour forms an explosive mixture with air. ▶ Severe explosion hazard, in the form of vapour, when exposed to flame or spark. ▶ Vapour may travel a considerable distance to source of ignition. ▶ Heating may cause expansion / decomposition with violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO) Combustion products include: carbon dioxide (CO2) hydrogen cyanide isocyanates and minor amounts of nitrogen oxides (NOX)

When heated at high temperatures many isocyanates decompose rapidly generating a vapour which pressurises containers, possibly to the

other pyrolysis products typical of burning organic material.

point of rupture. Release of toxic and/or flammable isocyanate vapours may then occur

May emit clouds of acrid smoke

Burns with acrid black smoke.

Estimate spill pool volume or area.

SECTION 6 Accidental release measures

HAZCHEM

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for conta	ninment and cleaning up
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Liquid Isocyanates and high isocyanate vapour concentrations will penetrate seals on self contained breathing apparatus - SCBA should be used inside encapsulating suit where this exposure may occur. For isocyanate spills of less than 40 litres (2 mz): Evacuate area from everybody not dealing with the emergency, keep them upwind and prevent further access, remove ignition sources and, if inside building, ventilate area as well as possible. Notify supervision and others as necessary. Put on personal protective equipment (suitable respiratory protection, face and eye protection, protective suit, gloves and impermeable boots). Control source of leakage (where applicable). Dike the spill to prevent spreading and to contain additions of decontaminating solution. Prevent the material from entering drains.

Version No: **3.6** Page **5** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

- Absorb and decontaminate. Completely cover the spill with wet sand, wet earth, vermiculite or other similar absorbent. Add neutraliser (for suitable formulations: see below) to the adsorbent materials (equal to that of estimated spill pool volume). Intensify contact between spill, absorbent and neutraliser by carefully mixing with a rake and allow to react for 15 minutes
- Shovel absorbent/decontaminant solution mixture into a steel drum.
- Decontaminate surface. Pour an equal amount of neutraliser solution over contaminated surface. Scrub area with a stiff bristle brush, using moderate pressure. Completely cover decontaminant with vermiculite or other similar absorbent. After 5 minutes, shovel absorbent/decontamination solution mixture into the same steel drum used above.
- Monitor for residual isocyanate. If surface is decontaminated, proceed to next step. If contamination persists, repeat decontaminate procedure immediately above
- Place loosely covered drum (release of carbon dioxide) outside for at least 72 hours. Label waste-containing drum appropriately.
 Remove waste materials for incineration.
- Decontaminate and remove personal protective equipment.
- ▶ Return to normal operation
- ▶ Conduct accident investigation and consider measures to prevent reoccurrence.

Decontamination:

Treat isocyanate spills with sufficient amounts of isocyanate decontaminant preparation ('neutralising fluid'). Isocyanates and polyisocyanates are generally not miscible with water. Liquid surfactants are necessary to allow better dispersion of isocyanate and neutralising fluids/ preparations. Alkaline neutralisers react faster than water/surfactant mixtures alone.

Typically, such a preparation may consist of:

Sawdust: 20 parts by weight Kieselguhr 40 parts by weight plus a mixture of {ammonia (s.g. 0.880) 8% v/v non-ionic surfactant 2% v/v water 90% v/v}.

Let stand for 24 hours

Three commonly used neutralising fluids each exhibit advantages in different situations.

Formulation A

liquid surfactant 0.2-2%

sodium carbonate 5-10%

water to 100%

Formulation B

liquid surfactant 0.2-2%

concentrated ammonia 3-8%

water to 100%

Formulation C

ethanol, isopropanol or butanol 50%

concentrated ammonia 5%

water to 100%

After application of any of these formulae, let stand for 24 hours.

Formulation B reacts faster than Formulation A. However, ammonia-based neutralisers should be used only under well-ventilated conditions to avoid overexposure to ammonia or if members of the emergency team wear suitable respiratory protection. Formulation C is especially suitable for cleaning of equipment from unreacted isocyanate and neutralizing under freezing conditions. Regard has to be taken to the flammability of the alcoholic solution.

- Avoid contamination with water, alkalies and detergent solutions.
- Material reacts with water and generates gas, pressurises containers with even drum rupture resulting.
- ▶ DO NOT reseal container if contamination is suspected.
- Open all containers with care.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- ▶ May be violently or explosively reactive.
- Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- ▶ Contain spill with sand, earth or vermiculite.
- ▶ Use only spark-free shovels and explosion proof equipment.
- ▶ Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
 Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Product is moisture sensitive; handle under a dry, inert gas.

Nitrogen with less than 5 ppm each of moisture and oxygen is recommended

The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe

- DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential.
- Any static discharge is also a source of hazard.
- Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina.
- ► Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage.
- Add inhibitor to any distillate as required.
- When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely.

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

rite peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

Version No: **3.6** Page **6** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

- A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- ▶ When handling, DO NOT eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- ► DO NOT use plastic buckets.
- ▶ Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Consider storage under inert gas.

for commercial quantities of isocyanates:

· Isocyanates should be stored in adequately bunded areas. Nothing else should be kept within the same bunding. Pre-polymers need not be segregated. Drums of isocyanates should be stored under cover, out of direct sunlight, protected from rain, protected from physical damage and well away from moisture, acids and alkalis.

- · Where isocyanates are stored at elevated temperatures to prevent solidifying, adequate controls should be installed to prevent the high temperatures and precautions against fire should be taken.
- · Where stored in tanks, the more reactive isocyanates should be blanketed with a non-reactive gas such as nitrogen and equipped with absorptive type breather valve (to prevent vapour emissions)..
- Transfer systems for isocyanates in bulk storage should be fully enclosed and use pump or vacuum systems. Warning signs, in appropriate languages, should be posted where necessary.
- Areas in which polyurethane foam products are stored should be supplied with good general ventilation. Residual amounts of unreacted isocyanate may be present in the finished foam, resulting in hazardous atmospheric concentrations.
- · Ideal storage temperature range is dependent on the specific polymer due to viscosity and melting point differences between the polymers. Use 25 deg C (77 deg F) to 30 deg C (86 deg F) as a guideline to most liquid isocyanates for optimum storage temperature. If some isocyanates are stored at or below a temperature of 25 deg C (77 deg F), crystallization and settling of the isocyanate may occur. Storage in a cold warehouse can cause crystals to form. These crystals can settle to the bottom of the container. If crystals do form, they can be melted easily with moderate heat. It is suggested that a container the size of a drum be warmed for 16-24 hours at sufficient temperature to melt the crystals. When the crystals are melted, the container should be agitated by rolling or stirring, until the contents are homogenous. Since heated isocyanate will generate vapors more rapidly than product stored at 25 deg C (77 deg F), be sure to follow the precautions under the Personal Protection.

Other information

- Store in original containers in approved flame-proof area.
- ▶ No smoking, naked lights, heat or ignition sources.
- ▶ DO NOT store in pits, depression, basement or areas where vapours may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the implementation of strict procedures and precautions.
- Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment to reduce the risk. The vapours in the head space of the storage vessel may lie in the flammable/explosive range and hence may be flammable.
- For containers, or container linings use mild steel, stainless steel. Examples of suitable materials are: high density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product.
- ► For container linings, use amine-adduct cured epoxy paint.
- For seals and gaskets use: graphite, PTFE, Viton A, Viton B.
- Unsuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for glove materials.
- Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours.

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)

 Manufactured product that requires stirring before use and having a viscosity
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

For alkyl aromatics

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but

Version No: **3.6** Page **7** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

- may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegge rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- ▶ Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.
- Esters react with acids to liberate heat along with alcohols and acids.
- ▶ Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.
- Glycol ethers may form peroxides under certain conditions; the potential for peroxide formation is enhanced when these substances are used in processes such as distillation where they are concentrated or even evaporated to near-dryness or dryness; storage under a nitrogen atmosphere is recommended to minimise the possible formation of highly reactive peroxides
- Nitrogen blanketing is recommended if transported in containers at temperatures within 15 deg C of the flash-point and at or above the flash-point - large containers may first need to be purged and inerted with nitrogen prior to loading
- In the presence of strong bases or the salts of strong bases, at elevated temperatures, the potential exists for runaway reactions.
- ▶ Contact with aluminium should be avoided; release of hydrogen gas may result- glycol ethers will corrode scratched aluminium surfaces.
- ▶ May discolour in mild steel/ copper; lined containers, glass or stainless steel is preferred
- Figure Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. Investigation of the hazards associated with use of 2-butoxyethanol for alloy electropolishing showed that mixtures with 50-95% of acid at 20 deg C, or 40-90% at 75 C, were explosive and initiable by sparks. Sparking caused mixtures with 40-50% of acid to become explosive, but 30% solutions appeared safe under static conditions of temperature and concentration.
- · Avoid reaction with water, alcohols and detergent solutions. Isocyanates are electrophiles, and as such they are reactive toward a variety of nucleophiles including alcohols, amines, and even water. Upon treatment with an alcohol, an isocyanate forms a urethane linkage. If a disocyanate is treated with a compound containing two or more hydroxyl groups, such as a diol or a polyol, polymer chains are formed, which are known as polyurethanes. Reaction between a di-isocyanate and a compound containing two or more amine groups, produces long polymer chains known as polyureas.
- · Isocyanates and thioisocyanates are incompatible with many classes of compounds, reacting exothermically to release toxic gases. Reactions with amines, strong bases, aldehydes, alcohols, alkali metals, ketones, mercaptans, strong oxidisers, hydrides, phenols, and peroxides can cause vigorous releases of heat. Acids and bases initiate polymerisation reactions in these materials.
- · Isocyanates also can react with themselves. Aliphatic di-isocyanates can form trimers, which are structurally related to cyanuric acid. Isocyanates participate in Diels-Alder reactions, functioning as dienophiles
- Isocyanates easily form adducts with carbodiimides, isothiocyanates, ketenes, or with substrates containing activated CC or CN bonds.
- · Some isocyanates react with water to form amines and liberate carbon dioxide. This reaction may also generate large volumes of foam and heat. Foaming spaces may produce pressure in confined spaces or containers. Gas generation may pressurise drums to the point of rupture.
- Do NOT reseal container if contamination is expected
- Open all containers with care
- · Base-catalysed reactions of isocyanates with alcohols should be carried out in inert solvents. Such reactions in the absence of solvents often occur with explosive violence,
- · Isocyanates will attack and embrittle some plastics and rubbers.
- The isocyanate anion is a pseudohalide (syn pseudohalogen) whose chemistry, resembling that of the true halogens, allows it to substitute for halogens in several classes of chemical compounds. The behavior and chemical properties of the several pseudohalides are identical to that of the true halide ions.
- ▶ A range of exothermic decomposition energies for isocyanates is given as 20-30 kJ/mol.
- The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment.
- For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	4,4'-diphenylmethane diisocyanate (MDI)	Methylene bisphenyl isocyanate (MDI)	Not Available	Not Available	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available
Australia Exposure Standards	cumene	Cumene	25 ppm / 125 mg/m3	375 mg/m3 / 75 ppm	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH		
naphtha petroleum, light aromatic solvent	Not Available	Not Available		
4,4'-diphenylmethane diisocyanate (MDI)	75 mg/m3	Not Available		
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available		
cumene	Not Available	Not Available		

Version No: 3.6 Page 8 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Spraying of material or material in admixture with other components must be carried out in conditions conforming to local state regulations. Local exhaust ventilation with full face air supplied breathing apparatus (hood or helmet type) is normally required. Unprotected personnel must vacate spraying area.

NOTE: Isocyanate vapours will not be adequately absorbed by organic vapour respirators. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Appropriate engineering controls

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min.) for extraction of solvents generated by spraying at a point 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.
- · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures.
- · Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that te concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Hands/feet protection

- NOTE:
- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

For esters:

▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term
- Contaminated gloves should be replaced

Version No: 3.6 Page 9 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

- ▶ Isocyanate resistant materials include Teflon, Viton, nitrile rubber and some PVA gloves.
- Protective gloves and overalls should be worn as specified in the appropriate national standard.
- Contaminated garments should be removed promptly and should not be re-used until they have been decontaminated.
- ▶ NOTE: Natural rubber, neoprene, PVC can be affected by isocyanates

Body protection

See Other protection below

Overalls

- ▶ PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower

Other protection

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

'Forsberg Clothing Performance Index'

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

ACTFLEX 700 PU PRIMER

Material	CPI
NITRILE	С
PE/EVAL/PE	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Ansell Glove Selection

love — In order of recommendation
lphaTec® 15-554
lphaTec® 38-612
lphaTec® Solvex® 37-185
lphaTec® 58-008
lphaTec® 58-530B
lphaTec® 58-530W
lphaTec® 58-735
lphaTec® 79-700
lphaTec® Solvex® 37-675
lphaTec® 53-001

The suggested gloves for use should be confirmed with the glove supplier.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1 P2	-	A-PAPR-AUS / Class 1 P2
up to 25 x ES	Air-line*	A-2 P2	A-PAPR-2 P2
up to 50 x ES	-	A-3 P2	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- ▶ In certain circumstances, personal protection of the individual employee is necessary. Personal protective devices should be regarded as being supplementary to substitution and engineering control and should not be used in preference to them as they do nothing to eliminate the hazard.
- ▶ However, in some situations, minimising exposure to isocyanates by enclosure and ventilation is not possible, and occupational exposure standards may be exceeded, particularly during on-site mixing of paints, spray-painting, foaming and maintenance of machine and ventilation systems. In these situations, air-line respirators or self-contained breathing apparatus complying with the appropriate nationals standard must be used.
- Organic vapour respirators with particulate pre- filters and powered, air-purifying spirators are NOT suitable
- ▶ Personal protective equipment must be appropriately selected, individually fitted and workers trained in their correct use and maintenance. Personal protective equipment must be regularly checked and maintained to ensure that the worker is being protected
- Air- line respirators or self-contained breathing apparatus complying with the appropriate national standard should be used during the clean-up of spills and the

Version No: 3.6 Page 10 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

repair or clean-up of contaminated equipment and similar situations which cause emergency exposures to hazardous atmospheric concentrations of isocyanate.

SECTION 9 Physical and chemical properties

I	ni	formati	on (on	basi	ср	hysi	ical	and	C	hemi	ical	pro	opert	ies

Appearance	Liquid						
Physical state	Liquid	Relative density (Water = 1)	Not Available				
Odour	Not Available	Partition coefficient n-octanol / water	Not Available				
Odour threshold	Not Available	Auto-ignition temperature (°C)					
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available				
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available				
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available				
Flash point (°C)	50	Taste	Not Available				
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available				
Flammability	Flammable.	Oxidising properties	Not Available				
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available				
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available				
Vapour pressure (kPa)	Not Available	Gas group	Not Available				
Solubility in water	Reacts	pH as a solution (1%)	Not Available				
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available				
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available				
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available				
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available				

SECTION 10 Stability and reactivity

Reactivity	See section 7	
Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.	
Possibility of hazardous reactions	See section 7	
Conditions to avoid	See section 7	
Incompatible materials	See section 7	
Hazardous decomposition products	See section 5	

SECTION 11 Toxicological information

Information on toxicological effects

inormation on toxicological on	· · · · · · · · · · · · · · · · · · ·			
a) Acute Toxicity	Based on available data, the classification criteria are not met.			
b) Skin Irritation/Corrosion	There is sufficient evidence to classify this material as skin corrosive or irritating.			
c) Serious Eye Damage/Irritation	There is sufficient evidence to classify this material as eye damaging or irritating			
d) Respiratory or Skin sensitisation	nere is sufficient evidence to classify this material as sensitising to skin or the respiratory system			
e) Mutagenicity	Based on available data, the classification criteria are not met.			
f) Carcinogenicity	There is sufficient evidence to classify this material as carcinogenic			
g) Reproductivity	Based on available data, the classification criteria are not met.			
h) STOT - Single Exposure	There is sufficient evidence to classify this material as toxic to specific organs through single exposure			
i) STOT - Repeated Exposure	There is sufficient evidence to classify this material as toxic to specific organs through repeated exposure			
j) Aspiration Hazard	There is sufficient evidence to classify this material as an aspiration hazard			
Inhaled	The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.			

There is strong evidence to suggest that this material can cause, if inhaled once, serious, irreversible damage of organs.

The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur.

Inhalation hazard is increased at higher temperatures.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Version No: 3.6 Page 11 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction red blood cells and bleeding abnormalities. There may also be drowsiness.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

The acute toxicity of inhaled alkylbenzene is best described by central nervous system depression. These compounds may also act as general anaesthetics. Whole body symptoms of poisoning include light-headedness, nervousness, apprehension, a feeling of well-being, confusion, dizziness, drowsiness, ringing in the ears, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, depression of breathing, and arrest. Heart stoppage may result from cardiovascular collapse. A slow heart rate and low blood pressure may also occur.

Alkylbenzenes are not generally toxic except at high levels of exposure. Their breakdown products have low toxicity and are easily eliminated from the body.

Ingestion

Strong evidence exists that exposure to the material may cause irreversible damage (other than cancer, mutations and birth defects) following a single exposure by swallowing.

The material is not thought to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum.

Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed.

Accidental ingestion of the material may be damaging to the health of the individual.

Skin Contact

This material can cause inflammation of the skin on contact in some persons

There is strong evidence to suggest that this material, on a single contact with skin, can cause serious, irreversible damage of organs. The material may accentuate any pre-existing dermatitis condition

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact

dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin

but branched species are more likely to.

Eye

Chronic

This material can cause eve irritation and damage in some persons.

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.

Studies show that inhaling this substance for over a long period (e.g. in an occupational setting) may increase the risk of cancer. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational

exposure. Some glycol esters and their ethers cause wasting of the testicles, reproductive changes, infertility and changes to kidney function. Shorter chain compounds are more dangerous.

Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. Persons with a history of asthma or other respiratory problems or are known to be sensitised, should not be engaged in any work involving the handling of isocyanates

The chemistry of reaction of isocyanates, as evidenced by MDI, in biological milieu is such that in the event of a true exposure of small MDI doses to the mouth, reactions will commence at once with biological macromolecules in the buccal region and will continue along the digestive tract prior to reaching the stomach. Reaction products will be a variety of polyureas and macromolecular conjugates with for example mucus, proteins and cell components.

This is corroborated by the results from an MDI inhalation study. Following an inhalation exposure of rats to radiolabelled MDI, 79% of the dose was excreted in faeces. The faecal excretion in these animals was considered entirely due to ingestion of radioactivity from grooming and ingestion of deposited material from the nasopharangeal region via the mucociliary escalator, i.e. not following systemic absorption. The faecal radioactivity was tentatively identified as mixed molecular weight polyureas derived from MDI. Diamine was not present. Thus, for MDI and diisocyanates in general the oral gavage dosing route is inappropriate for toxicological studies and risk assessment.

It is expected that oral gavage dosing will result in a similar outcome to that produced by TDI or MDI, that is (1) reaction with stomach contents and (2) polymerization to solid polyureas.

- Reaction with stomach contents is very plausibly described in case reports of accidental ingestion of polymeric MDI based glue in domestic animals. Extensive polymerization and CO2 liberation resulting in an expansion of the gastric content is described in the stomach, without apparent acute chemical toxicity
- Polyurea formation in organic and aqueous phases has been described. In this generally accepted chemistry of hydrolysis of an isocvanate the initially produced carbamate decarboxylates to an amine which. The amine, as a reactive intermediate, then reacts very readily with the present isocyanate to produce a solid and inert polyurea. This urea formation acts as a pH buffer in the stomach, thus promoting transformation of the diisocyanate into polyurea, even under the acidic conditions.

At the resorbtive tissues in the small intestine, these high molecular reaction products are likely to be of very low bioavailability, which is substantiated by the absence of systemic toxicity in acute oral bioassays with rats at the OECD limit dose (LC50>2 g/kg bw). The respiratory tract may be regarded as the main entry for systemically available isocyanates as evidenced following MDI exposures. A detailed summary on urinary, plasma and in vitro metabolite studies is provided below. Taken together, all available studies provide

convincing evidence that MDI-protein adduct and MDI-metabolite formation proceeds:

- via formation of a labile isocyanate glutathione (GSH)-adduct,
- ▶ then transfer to a more stable adduct with larger proteins, and
- without formation of free MDA. MDA reported as a metabolite is actually formed by analytical workup procedures (strong acid or base hydrolysis) and is not an identified metabolite in urine or blood

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

ACTELEX 700 PU PRIMER

TOXICITY IRRITATION Not Available Not Available

naphtha petroleum, light aromatic solvent

TOXICITY	IRRITATION
Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye (Rodent - rabbit): 100uL/24H - Mild
Inhalation (Rat) LC50: >4.42 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
Oral (Rat) LD50; >4500 mg/kg ^[1]	Skin: adverse effect observed (irritating) ^[1]

Version No: 3.6 Page 12 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

4,4'-diphenylmethane diisocyanate (MDI)	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >6200 mg/kg ^[2]	Eye (Rodent - rabbit): 100mg - Moderate	
	Inhalation (Rat) LC50: 0.368 mg/L4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Mouse) LD50; 2200 mg/kg ^[2]	Skin (Rodent - rabbit): 500mg/24H	
		Skin: adverse effect observed (irritating) ^[1]	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
propylene glycol nonomethyl ether acetate,	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
alpha-isomer	Oral (Rat) LD50: 3739 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 2000 mg/kg ^[2]	Eye (Rodent - rabbit): 500mg/24H - Mild	
	Inhalation (Rat) LC50: 39 mg/L4h ^[2]	Eye (Rodent - rabbit): 86mg - Mild	
cumene	Oral (Rat) LD50: 1400 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
		Skin (Rodent - rabbit): 100mg/24H - Moderate	
		Skin (Rodent - rabbit): 10mg/24H - Mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
		Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless oth	

Data demonstrate that during inhalation exposure, aromatic hydrocarbons undergo substantial partitioning into adipose tissues. Following cessation of exposure, the level of aromatic hydrocarbons in body fats rapidly declines. Thus, the aromatic hydrocarbons are unlikely to bioaccumulate in the body. Selective partitioning of the aromatic hydrocarbons into the non-adipose tissues is unlikely. No data is available

regarding distribution following dermal absorption. However, distribution following this route of exposure is likely to resemble the pattern

Aromatics hydrocarbons may undergo several different Phase I dealkylation, hydroxylation and oxidation reactions which may or may not be followed by Phase II conjugation to glycine, sulfation or glucuronidation. However, the major predominant biotransformation pathway is typical of that of the alkylbenzenes and consists of: (1) oxidation of one of the alkyl groups to an alcohol moiety; (2) oxidation of the hydroxyl group to a carboxylic acid; (3) the carboxylic acid is then conjugated with glycine to form a hippuric acid. The minor metabolites can be expected to consist of a complex mixture of isomeric triphenols, the sulfate and glucuronide conjugates of dimethylbenzyl alcohols, dimethylbenzoic acids and dimethylhippuric acids. Consistent with the low propensity for bioaccumulation of aromatic hydrocarbons, these substances are likely to be significant inducers of their own metabolism. The predominant route of excretion of aromatic hydrocarbons following inhalation exposure involves either exhalation of the unmetabolized

parent compound, or urinary excretion of its metabolites. When oral administration occurs, there is little exhalation of unmetabolized these hydrocarbons, presumably due to the first pass effect in the liver. Under these circumstances, urinary excretion of metabolites is the dominant route of excretion

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of nparaffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

For C9 aromatics (typically trimethylbenzenes – TMBs)

occurring with inhalation exposure.

Acute toxicity: Animal testing shows that semi-lethal concentrations and doses vary amongst this group. The semilethal concentrations for inhalation range from 6000 to 10000 mg/cubic metre for C9 aromatic naphtha and 18000-24000 mg/cubic metre for 1,2,4- and 1,3,5-TMB, respectively. Irritation and sensitization: Results from animal testing indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to

the skin, minimally irritating to the eye, and have the potential to irritate the airway and cause depression of breathing rate. There is no evidence that it sensitizes skin. Repeated dose toxicity: Animal studies show that chronic inhalation toxicity for C9 aromatic hydrocarbon solvents is slight. Similarly, oral

exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutation-causing ability: No evidence of mutation-causing ability and genetic toxicity was found in animal and laboratory testing.

Reproductive and developmental toxicity: No definitive effects on reproduction were seen, although reduction in weight in developing animals may been seen at concentrations that are toxic to the mother.

Inhalation (human) TCLo: 0.13 ppm/30 mins Eye (rabbit): 0.10 mg moderate The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce

conjunctivitis Aromatic and aliphatic diisocvanates may cause airway toxicity and skin sensitization. Monomers and prepolymers exhibit similar respiratory

effect. Of the several members of diisocyanates tested on experimental animals by inhalation and oral exposure, some caused cancer while others produced a harmless outcome. This group of compounds has therefore been classified as cancer-causing.

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

4,4'-DIPHENYLMETHANE

DIISOCYANATE (MDI)

ACTELEX 700 PU PRIMER

NAPHTHA PETROLEUM

LIGHT AROMATIC SOLVENT

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS

For propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM).

Version No: **3.6** Page **13** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: **17/03/2025**

Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain homologues in the ethylene series are not associated with reproductive toxicity, but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolized in the body.

As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been shown to cause birth defects. Available instance indicates that propylene glycol ethers are unlikely to possess genetic toxicity.

CUMENE

Cumene is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals. Cumene caused tumours at several tissue sites, including lung and liver in mice and kidney in male rats. Several proposed mechanisms of carcinogenesis support the relevance to humans of lung and liver tumours in experimental animals. Specifically, there is evidence that humans and experimental animals metabolise cumene through similar metabolic pathways. There is also evidence that cumene is genotoxic in some tissues, based on findings of DNA damage in rodent lung and liver. Furthermore, mutations of the K-ras oncogene and p53 tumor-suppressor gene observed in cumene-induced lung tumours in mice, along with altered expression of many other genes, resemble molecular alterations found in human lung and other cancers. The relevance of the kidney tumors to cancer in humans is uncertain; there is evidence that a species-specific mechanism not relevant to humans contributes to their induction, but it is possible that other mechanisms relevant to humans, such as genotoxicity, may also contribute to kidney-tumour formation in male rats.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the

For aromatic terpenes: p-cymene and cumene have low toxic potential and are excreted in the urine. At very high doses in animal testing, inco-ordination, damage to the kidneys and lung inflammation, with decrease in thymus weight, occurred. This group of substances does not seem to cause cancer, genetic damage or developmental toxicity and has low potential for reproductive toxicity.

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002]

production of vesicles, scaling and thickening of the skin.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

ACTFLEX 700 PU PRIMER & NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT & 4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI) & CUMENE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

ACTFLEX 700 PU PRIMER & 4,4'-DIPHENYLMETHANE DIISOCYANATE (MDI)

Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

ACTFLEX 700 PU PRIMER & PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

InternationI Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

ACTFLEX 700 PU PRIMER & NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after exposure by swallowing, inhalation, or skin contact. In the workplace, inhalation and skin contact are the most important routes of absorption; whole-body toxic effects from skin absorption are unlikely to occur as the skin irritation caused by the chemical generally leads to quick removal. The substance is fat-soluble and may accumulate in fatty tissues. It is also bound to red blood cells in the bloodstream. It is excreted from the body both by exhalation and in the urine.

Acute toxicity: Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin, and breathing the vapour is irritating to the airway, causing lung inflammation. Breathing high concentrations of the chemical vapour causes headache, fatigue and drowsiness. In humans, liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of the vapour causes chemical pneumonitis. Direct skin contact causes dilation of blood vessels, redness and irritation.

Nervous system toxicity: 1,2,4-trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures in the workplace containing the chemical causes headache, fatigue, nervousness and drowsiness.

Subacute/chronic toxicity: Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension and inflammation of the bronchi. Painters that worked for several years with a solvent containing 50% 1,2,4-trimethylbenzene and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anaemia and changes in blood clotting; blood effects may have been due to trace amounts of benzene. Animal testing showed that inhaling trimethylbenzene may alter blood counts, with reduction in lymphocytes and an increase in neutrophils.

Genetic toxicity: Animal testing does not show that the C9 fraction causes mutations or chromosomal aberrations.

Version No: **3.6** Page **14** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

	Developmental / reproductive toxicity: Animal testing showed that the C9 fraction of 1,2,4	-trimethylbenzene caused reproductive toxicity.
Acute Toxicity	X Carcinogenicity	✓
Skin Irritation/Corrosion	Reproductivity	×
Serious Eye Damage/Irritation	✓ STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓ STOT - Repeated Exposure	~
Mutagenicity	X Aspiration Hazard	✓

Legend:

Data either not available or does not fill the criteria for classification
 Data available to make classification

SECTION 12 Ecological information

Toxicity

CTFLEX 700 PU PRIMER	Endpoint	Test Duration (hr)		Sp	Species Value			Source	
CIFLEX 700 PO PRIMER	Not Available	Not Available Not Available		No	Not Available Not Available		Not Available		
	Endpoint	Tes	t Duration (hr)	Specie	s			Value	Source
	EC50	48h		Crustac	Crustacea			6.14mg/l	1
naphtha petroleum, light aromatic solvent	EC50	72h		Algae o	Algae or other aquatic plants			19mg/l	1
aromatio sorveni	EC50	96h		Algae o	r other aquatic pla	ants		64mg/l	2
	NOEC(ECx)	72h		Algae o	r other aquatic pla	ants		1mg/l	1
	Endpoint		Test Duration (hr)		Species		Value		Source
	EC50		48h		Crustacea		>100mg	g/l	2
4,4'-diphenylmethane diisocyanate (MDI)	BCF	672h					61-150		7
	NOEC(ECx)	504h			Crustacea		>=10mg/l		2
	LC50	96h			Fish	Fish >1		g/l	2
	Endpoint	Test	Duration (hr)	Species			Va	ilue	Source
	EC50	48h		Crustacea			37	'3mg/l	2
propylene glycol	EC50	72h		Algae or o	ther aquatic plan	ts	>1	000mg/l	2
nonomethyl ether acetate, alpha-isomer	EC50	96h		Algae or o	ther aquatic plan	ts	>1	000mg/l	2
•	NOEC(ECx)	336h		Fish 47.			'.5mg/l	2	
	LC50	96h		Fish	Fish 10		00-180mg/l	2	
	Fu du siné	Tes	t Duration (hr)	Specie	s			Value	Source
	Endpoint	, ,			Crustacea			4mg/l	1
	EC50	48h		Crustac	ea		Algae or other aquatic plants		
cumene		48h 72h				ants		1.29mg/l	2
cumene	EC50				r other aquatic pla	ants		1.29mg/l 0.4mg/l	1

For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble.

Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are 'readily biodegradable' under aerobic conditions. In soil, biodegradation is rapid for PM and PMA.

Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates.

For 1,2,4 - Trimethylbenzene:

Half-life (hr) air: 0.48-16;

Half-life (hr) H2O surface water: 0.24 -672;

Half-life (hr) H2O ground: 336-1344;

Half-life (hr) soil: 168-672;

Henry's Pa m3 /mol: 385 -627;

Bioaccumulation: not significant. 1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance.

(Japan) - Bioconcentration Data 8. Vendor Data

Atmospheric Fate: 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs. Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life 8820 days).

Aquatic Fate: 1,2,4-Trimethylbenzene volatilizes rapidly from surface waters with volatilization half-life from a model river calculated to be 3.4 hours. Biodegradation of 1,2,4-trimethylbenzene has been noted in both seawater and ground water. Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene.

Terrestrial Fate: 1,2,4-Trimethylbenzene also volatilizes from soils however; moderate adsorption to soils and sediments may occur. Volatilization is the major route of removal of 1,2,4- trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations.

Ecotoxicity: No significant bioaccumulation has been noted. 1,2,4-Trimethylbenzene is moderately toxic to fathead minnow and slightly toxic to dungeness crab. 1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms. No stress was observed in rainbow trout, sea lamprey and Daphnia magna water fleas. The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment.

For Aromatic Substances Series

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Version No: **3.6** Page **15** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L. was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density),

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For C9 aromatics (typically trimethylbenzene - TMBs)

Chemicals in this category possess properties indicating a hazard for the environment (acute toxicity for fish, invertebrates, and algae from 1 to 10 mg/L). Category members are readily biodegradable, except 1,3,5-trimethylbenzene (CAS RN 108-67-8). Category members are not expected to be bioaccumulative.

In the air, category member constituents have the potential to rapidly degrade through indirect photolytic processes mediated primarily by hydroxyl radicals with calculated degradation half-lives ranging from 0.54 to 2.81 days (based on a 12-hour day and a hydroxyl radical concentration of 5x10+5). Aqueous photolysis and hydrolysis will not contribute to the transformation of category chemical constituents in aquatic environments because they are either poorly reactive or not susceptible to these reactions. Results of the Mackay Level I environmental distribution model show that chemical constituents of C9 Aromatic Hydrocarbon Solvents Category members have the potential to partition to air (96.8 to 98.9 %), with a negligible amount partitioning to water (0.2 to 0.6%) and soil (0.9 to 2.7%). In comparison, Level III modeling indicates that category members partition primarily to soil (66.3 to 79.6%) and water (17.8 to 25.0%) compartments rather than air (2.4 to 8.4%) when an equal emission rate (1000 kg/hr) is assumed to each of the air, water, and soil compartments. When release (1000 kg/hr) is modeled only to either the air, water, or soil compartment, constituents are indicated in the modeling to partition primarily (>94%) to the compartment to which they are emitted as advection and degradation influence constituent concentration in compartments to which constituents are not released. Solvent naphtha, (pet.), light aromatic (CAS RN 64742-95-6), 1,2,4-trimethylbenzene (CAS RN 95-63-6), and 1-ethyl-3-methylbenzene (CAS RN 620-14-4) were determined to be readily biodegradable based on the studies that used the TG OECD 301F (the latter substance is used to characterize the potential biodegradability of the category member, ethylmethylbenzene (CAS RN 25550-14-5)). These three substances exceed 60%

biodegradation in 28 days and met the 10-day window criterion for ready biodegradation. In comparison 1,3,5-trimethylbenzene (CAS RN 108-67-8) was not readily biodegradable. It achieved 42% biodegradation after 28 days and 60% biodegradation after 39 days. The result for the multi-constituent substance (CAS RN 64742-95-6), a

Version No: **3.6** Page **16** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

UVCB, characterizes the biodegradability of that substance as a whole, but it does not suggest that each constituent is equally biodegradable. As with all ready biodegradation test guidelines, the test system and study design used with these substances (OECD TG 301F) is not capable of distinguishing the relative contribution of the substances' constituents to the total biodegradation measured.

Based on Henry's Law constants (HLCs) representing a potential to volatilize from water that range from 590 to 1000 Pa-m3/mole, the potential to volatilize from surface waters for chemicals in the C9 Aromatic Hydrocarbon Solvents Category is expected to be high.

Based on the measured bioconcentration factors that range from 23 to 342 for 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, the category members are not expected to be bioaccumulative.

Ecotoxicity

Acute toxicity values used to characterize this category for fish (LL50; LC50) and invertebrates (EL50; EC50) range from 3.5 to 9.2 mg/L, based on measured data. For algae, one study for a category member (CAS RN 64742-95-6) resulted in a 72-hr EC50 of 2.4 mg/L (biomass) and 2.7 mg/L (growth rate) based on measured concentrations. The algal 72-hour NOEC (no observed effect concentration) for biomass and growth rate is 1.3 mg/L, based on mean measured concentrations. A 21-day Daphnia magna reproduction study with 1,3,5-trimethylbenzene (CAS RN 108-67-8) resulted in a NOEC value of 0.4 mg/L, based on a minimum measured value. For Glycol Ethers:

Environmental Fate: Several glycol ethers have been shown to biodegrade however; biodegradation slows as molecular weight increases. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Atmospheric Fate: Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photo-degradation (atmospheric half lives = 2.4-2.5 hr). Aquatic Fate: In water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from -1.73 to +0.51).

Ecotoxicity: Tri- and tetra ethylene glycol ethers are 'practically non-toxic' to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the butyl ethers. Glycols exert a high oxygen demand for decomposition and once released to the environment death of aquatic organisms occurs if dissolved oxygen is depleted.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
4,4'-diphenylmethane diisocyanate (MDI)	LOW (Half-life = 1 days)	LOW (Half-life = 0.24 days)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW
cumene	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
4,4'-diphenylmethane diisocyanate (MDI)	LOW (BCF = 15)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)
cumene	LOW (BCF = 35.5)

Mobility in soil

Ingredient	Mobility
4,4'-diphenylmethane diisocyanate (MDI)	LOW (Log KOC = 376200)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (Log KOC = 1.838)
cumene	LOW (Log KOC = 817.2)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

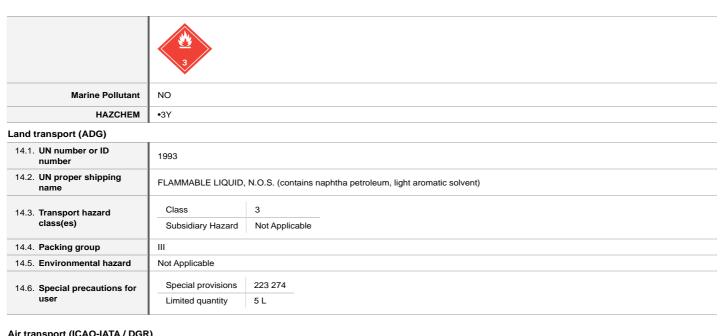
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.


- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Issue Date: 17/03/2025 Version No: 3.6 Page 17 of 19

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

Air transport (ICAO-IATA / DGR)		
14.1. UN number	1993		
14.2. UN proper shipping name	Flammable liquid, n.o.s. * (contains naphtha petroleum, light aromatic solvent)		
	ICAO/IATA Class	3	
14.3. Transport hazard class(es)	ICAO / IATA Subsidiary Hazard	Not Applicable	
Class(es)	ERG Code	3L	
14.4. Packing group			
14.5. Environmental hazard	Not Applicable		
	Special provisions		A3
	Cargo Only Packing Instructions		366
	Cargo Only Maximum Qty / Pack		220 L
14.6. Special precautions for user	Passenger and Cargo Packing In	structions	355
usei	Passenger and Cargo Maximum	Qty / Pack	60 L
	Passenger and Cargo Limited Qu	uantity Packing Instructions	Y344
	Passenger and Cargo Limited Maximum Qty / Pack		10 L

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1993		
14.2. UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains naphtha petroleum, light aromatic solvent)		
14.3. Transport hazard	IMDG Class	3	
class(es)	IMDG Subsidiary Ha	azard Not Applicable	
14.4. Packing group	III		
14.5 Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS Number	F-E , S-E	
	Special provisions	223 274 955	
	Limited Quantities	5L	

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
naphtha petroleum, light aromatic solvent	Not Available
4,4'-diphenylmethane diisocyanate (MDI)	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available
cumene	Not Available

Version No: **3.6** Page **18** of **19** Issue Date: **17/03/2025**

ACTFLEX 700 PU PRIMER

ACTFLEX 700 FO FRIMER	

14.7.3. Transport in bulk in accordance with the	ne IGC Code

Not Available

14. To Transport in Suit in accordance with the 100 Code		
Product name	Ship Type	
naphtha petroleum, light aromatic solvent	Not Available	
4,4'-diphenylmethane diisocyanate (MDI)	Not Available	
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	
cumene	Not Available	
Polyurethane prepolymer	Not Available	

SECTION 15 Regulatory information

Product name
Polyurethane prepolymer

Safety, health and environmental regulations / legislation specific for the substance or mixture

naphtha petroleum, light aromatic solvent is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

4,4'-diphenylmethane diisocyanate (MDI) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

propylene glycol monomethyl ether acetate, alpha-isomer is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

cumene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

 $\label{thm:conditional} \textbf{International Agency for Research on Cancer (IARC) - Agents \ Classified \ by \ the \ IARC \ Monographs \ Classified \ by \ Classified \ by \ Classified \ Clas$

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	al Inventory Status	
Australia - AIIC / Australia Non- Industrial Use	Yes	
Canada - DSL	Yes	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	17/03/2025
Initial Date	08/08/2017

SDS Version Summary

Version	Date of Update	Sections Updated
2.6	17/03/2025	Hazards identification - Classification, Composition / information on ingredients - Ingredients, Name

Print Date: 17/03/2025

Version No: 3.6 Page 19 of 19 Issue Date: 17/03/2025

ACTFLEX 700 PU PRIMER

Print Date: 17/03/2025

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit.
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure IndexDNEL: Derived No-Effect Level
- PNEC: Predicted no-effect concentration
- ▶ MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ► ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
 PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances